

	Da sich bei der Neutralisation die Leitfähigkeit und der pH-Wert ändern, kann man die Titration sowohl konduk-
Prinzip	tometrisch wie auch potenziometrisch verfolgen.
-	Mit Vernier Go!Link /Logger Pro hat man die Möglichkeit, Leitfähigkeit und pH-Wert gleichzeitig aufzunehmen.

Versuch als 2-Kanal Messung nicht durchführbar: Die Module besitzen keine Potentialtrennung

1

АК	Konduktometrische und potenziometrische										
(appenberg	Titration von Salzsäure mit Natronlauge										
	2-Kanalmessung (normale Bürette)										
Oberr	menue Versuch V ⁺ dann nicht "Datenerfassung starten" sondern: Datenerfassung V ⁺										
Bei M	lodus : 🖯 ausgewählte Ereignisse										
In Ob	eres Koordinatensystem (1) rechts und Optionen für Diagramme (1)										
Reite	r: Achsenoptionen) γ-Achsen M pH und setzen, bei L Elektrische Leitfähigkeit (μS/cm).										
"y-Ac	y-Achse-Spalten": Skalierung ⊖ Manuell Anfang: 14, Unten: 0										
Oben	rechts M rechte Y-Achse										
Rech	Liektrische Leittanigkeit (μ5/cm).										
Skalle	 Skalierung Manuell Spitze:										
Koord	dinatensystem () dann mit Maus nach unten aufziehen, um den Granhen zu vergrößern										
Haup	tmenü Daten M Neu berechnete Spalten M bei Name: 🐖 Volumen Kurzname 🐖 Vol										
Einhe	it 🚋 mL										
Unter	n auf Variable (Spalten) 👚 🗧 Ereignisnummer bei Gleichung 🚈 /2-0.5 (Dezimalpunkt!!)										
In Ko	ordinatensystem 👚 rechts und Optionen für Diagramme 🖓										
Reite	r: Achsenoptionen 🕂 -Achse: Spalte ⊖ Volumen(mL) und Fertig										
pH-Kalib	rierung										
Oberr	nenü Versuch 💾 Sensoren konfigurieren 🖑 alle Schnittstellen anzeigen 🖑										
Recht	s oben auf Bildchen Elektrodensignalverstärker										
Jetzt	Kalibrieren 🍟										
Y Elektr	Tode spulen, in den Puller pH = 7 stellen - Bei Ablesung 1 wert in Dateneinnelten eingeben V										
► Elektr	rode spülen in den Puffer nH = 4 stellen - Bei Ablesung 2 "Wert in Dateneinheiten eingehen" $\boxed{24}$										
Wart	en, bis die angezeigte Spannung bei "Sensoren zur Kalibrierung auswählen" stabil ist. Beibehalten										
Fert	ig M										
▶ Beide	Bildchen schließen.										
▶ nH-El	ektrode am Stativ befestigen. Rührfisch darf heim Drehen die Elektroden nicht berühren										

- PH-Elektrode am Stativ befestigen. Rührfisch darf beim Drehen die Elektroden nicht berühren.
- So viel dest. Wasser zugeben, dass die Pt-Bleche der LF-Elektrode gut bedeckt sind.
 Zur Messwertaufnahme bei 0.0 ml. Starten August und mit Beibehalten As speich
- Zur Messwertaufnahme bei 0,0 mL Starten 1. und mit Beibehalten 1. s speichern
 Die Titratorflüssigkeit kontinuierlich (mit recht kleiner Geschwindigkeit!) aus der Bürette auslaufen lassen und nach jeweils 0,5 mL einen Messwert Beibehalten 1. jeweils speichern.
- Mit Stopp 🕐 beenden.

Speichern

Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge

Ť

Ŕ

Test

N 02A

5.1 Vernier

Logger Pro

2-Kanalmessung (normale Bürette)

	 Zum Speichern Datei und Speichern unter in Eigene Dateien oder evtl. Logger Pro . Projektnamen eingeben (hier: Beispiel) N02a-5-1-user und Speichern .
Excel Export	 Hauptmenü Datei und Exportieren als Text Dateiname: N02a-5-1-user und Speichern Öffnen In Excel: Vom Desktop Excel aufrufen. Ganz oben ganz links Office-Knopf Öffnen In Fenster "Öffnen" Suchen in Eigen Dateien/Logger Pro". Unten in der Mitte: Dateityp: Textdateien (*om) v N05-2a5-1-user.txt Weiter Fertig stellen
Öffnen bei Bedarf	 Logger Pro A neu starten. Zum Öffnen Datei A und Öffnen A Suchen in Eigene Dateien A oder evtl. und Logger Pro A dann die passende Datei mit A öffnen.

Aus-	
wertung	Mit linker Maustaste Bereich der Vorperiode (langsam ansteigender Ast) markieren, "Analysieren" ankliklicken,
	für die Bereiche der Hauptneriede (stark ansteigender Ast) und Nachneriede (langsam ansteigende Ast) wieder
	halen. Den v Mart des Ärvivelenen veltes hersehnen mit v. 0.5* (h2 h1) (m1 m2) (h2 h2) (m2 m2)
	noien. Den x-wert des Aquivalenzpunktes berechnen mit $x = 0.5^{\circ}(bz-b1)/(m1-mz)+(b3-b2)/(mz-m3)>$.
	Auf Icon "Fadenkreuz"(7.Icon von rechts) klicken und mit der Maus den Aquivalenzpunkt einstellen. Unten
	können die Koordinaten abgelesen werden. (Das oben eingeblendete Wertepaar ist eines der gemessenen Wer-
	tepaare.)

	2. Auswertung des Graphen für die elektrische Leitfähigkeit										
	Auswertung: Äquivalenzpunkt										
	Zur Auswertung des Leitfähigkeitsgraphen bietet sich die "Zweigeradenmethode" an:										
	Durch die Messpunkte der beiden "Schenkel" werden Ausgleichsgeraden gelegt (Die Schüler können die Aus- gleichsgeraden mit dem Geo-Dreieck einzeichnen). Der Schnittpunkt der beiden Geraden ist das Volumen im Äquivalenzpunkt.										
	In absteigenden Graphen Iinks gedrückt Bereich (färbt sich gräulich) markieren.										
	Analysieren 😷 Lineare Regression 🕂 🗹 Aktuell Elektrische Leitfähigkeit 🛛 OK 😷										
	Ergebniskästchen mit										
Aus-	Evtl. Werte der Regressionsgeraden. Faktor A1und Offset B1 notieren.										
wertung	In aufsteigenden Graphen I links gedrückt Bereich (färbt sich gräulich) markieren.										
	Analysieren CLineare Regression CLINE Aktuell Elektrische Leitfähigkeit OK										
Teil 2	Ergebniskästchen mit Iinks positionieren										
	 Evtl. Werte der Regressionsgeraden. Faktor A2und Offset B2 notieren. 										
	Zu Fuß den Schnittpunkt berechnen: Vä = (B1-B2) / (A2-A1)										
	Rechenhilfe: CASSYlab Minimieren 🦳 🥂 Am Computer bei Programme Zubehör 🦿										
	Rechner Rechner wissenschaftlich										
	Berechnung des Gehaltes:: Bei Äquivalenz gilt: n(HCl) = n(NaOH) also c(HCl) = c(NaOH) · V(NaOH)										
	V(HCl)										
	Alternativ im Koordinatensystem eine optische Auswertung durchführen (Werte stehen unten links).										

3

Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge

N 02A 5.1 Vernier Logger Pro

2-Kanalmessung (normale Bürette)

Geräte und Chemikalien müssen schon aufgebaut, anschlossen und eingeschaltet sein!									
Quick-	Einmal gespeicherte Einstellungen können für eine sofortige neue Messung benutzt werden								
	Logger Pro 🕆 🕂 neu starten. Zum Öffnen Datei 🕆 und Datei öffnen 🔶								
Start	Suchen in Eigene Dateien oder evtl. Logger Pro 1: dann die Datei N02a-5-1-QS 1 offnen.								
	Mit Starten 🕐 die Messwertspeicherung starten.								
	Im Fenster "Daten Löschen?" Löschen und fortsetzen 🕐								
	Dann weiter, wie bei Durchführung beschrieben.								

Zeitbedarf Minuten		Aufbau (Exp):	Ve Re	orber. echn.	Durch- führ.		Auswer- tung		Ab- bau		Intuitive Be- dienung (+1-6)	
Beachten:	0					Ent	sorgung	Ausgu	iss evtl	. nacł	Neutralisation	

Literatur F. Kappenberg; Computer im Chemieunterricht 1988, S. 142, Verlag Dr. Flad, Stuttgart

www.kappenberg.com Materialien Vergleich Messsysteme 06/20	.4	4
--	----	---